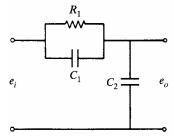
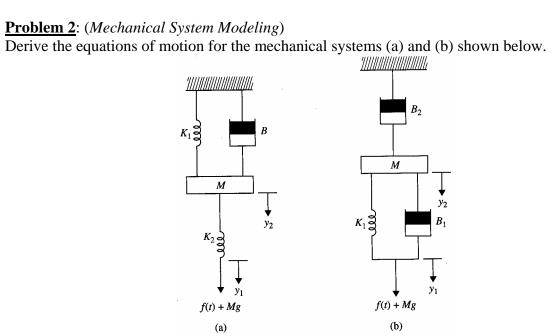
OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

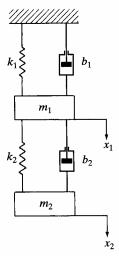
ECEN/MAE 3723 Systems I Fall 2004 Midterm Exam #2 November 23, 2004

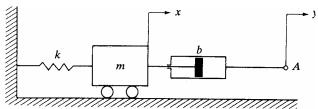

Please specij	fy which	•	l below to	be graded:	
1)	; 2)	; 3)	; 4)	;	
Name : _					
Student ID:					
E-Mail Address:					


Problem 1: (Electrical Circuits Modeling)

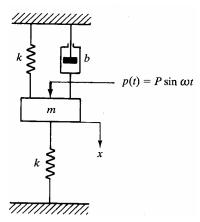
Derive the transfer function $E_o(s)/E_i(s)$ of the electrical circuit shown below. The input voltage is a pulse signal given by

$$e_i(t) = \begin{cases} 10 \text{ Volt, } 0 \le t \le 5 \\ 0, \text{ elsewhere} \end{cases}$$


 $e_i(t) = \begin{cases} 10 \text{ Volt}, & 0 \le t \le 5 \\ 0, & \text{elsewhere} \end{cases}.$ Obtain the output $e_o(t)$. Assume that the initial charges in the capacitors C_1 and C_2 are zeros. Assume also that $C_2 = 1.5C_1$ and $R_1C_1 = 1$ second.


Problem 3: (Analogous System)

Using the force-voltage analogy, obtain an electrical circuit of the mechanical system shown below. Assume that the displacements x_1 and x_2 are measured from their respective equilibrium positions.


Problem 4: (*Time Response*)

The mechanical system shown below is at rest initially. At t = 0, a unit-step displacement input is applied to point A (i.e., y(t) = u(t)). Assuming that the system remains linear throughout the response period and is *critically damped*, determine the response x(t) as well as the values of x(0+) and $\dot{x}(0+)$.

Problem 5: (Frequency Response)

Consider the mechanical system shown below. If the numerical values of system parameters are given as $m = 10 \,\mathrm{kg}$, $b = 30 \,\mathrm{N}$ - s/m, $k = 500 \,\mathrm{N/m}$, $p = 10 \,\mathrm{N}$ and $\omega = 2 \,\mathrm{rad/s}$, what is the steady-state output x(t)? The displacement x is measured from the equilibrium position before the input p(t) is given.

